mygrad.nnet.activations.leaky_relu#
- mygrad.nnet.activations.leaky_relu(x: ArrayLike, slope: float, *, constant: bool | None = None) Tensor [source]#
Returns the leaky rectified linear activation elementwise along x.
The leaky ReLU is given by max(x, 0) + slope*min(x, 0).
- Parameters:
- xArrayLike
Input data.
- slopeUnion[Real, mygrad.Tensor]
The slope of the negative activation.
- constantOptional[bool]
If
True
, the returned tensor is a constant (it does not back-propagate a gradient).
- Returns:
- mygrad.Tensor
The result of apply the “leaky relu” function elementwise to x.
Examples
>>> import mygrad as mg >>> from mygrad.nnet.activations import leaky_relu >>> x = mg.arange(-5, 6) >>> x Tensor([-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]) >>> y = leaky_relu(x, slope=0.1); y >>> Tensor([-0.5, -0.4, -0.3, -0.2, -0.1, 0. , 1. , 2. , 3. , 4. , 5. ]) >>> y.backward() >>> x.grad array([0.1, 0.1, 0.1, 0.1, 0.1, 0. , 1. , 1. , 1. , 1. , 1. ])
(Source code, png, hires.png, pdf)