mygrad.nnet.initializers.glorot_uniform#
- mygrad.nnet.initializers.glorot_uniform(*shape, gain=1, dtype=<class 'numpy.float32'>, constant=None)[source]#
Initialize a
mygrad.Tensor
according to the uniform initialization procedure described by Glorot and Bengio.- Parameters:
- shapeSequence[int]
The shape of the output Tensor. Note that
shape
must be at least two-dimensional.- gainReal, optional (default=1)
The gain (scaling factor) to apply.
- dtypedata-type, optional (default=float32)
The data type of the output tensor; must be a floating-point type.
- constantbool, optional (default=False)
- If
True
, the returned tensor is a constant (it does not back-propagate a gradient).
- If
- Returns:
- mygrad.Tensor, shape=``shape``
A Tensor, with values initialized according to the glorot uniform initialization.
Notes
- Glorot and Bengio put forward this initialization in the paper
“Understanding the Difficulty of Training Deep Feedforward Neural Networks”
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
A Tensor \(W\) initialized in this way should be drawn from a distribution about
\[U[-\frac{\sqrt{6}}{\sqrt{n_j+n_{j+1}}}, \frac{\sqrt{6}}{\sqrt{n_j+n_{j+1}}}]\]