mygrad.nnet.activations.soft_sign#
- mygrad.nnet.activations.soft_sign(x: ArrayLike, *, constant: bool | None = None) Tensor [source]#
Returns the soft sign function x / (1 + |x|).
- Parameters:
- xArrayLike
Input data.
- constantboolean, optional (default=False)
If
True
, the returned tensor is a constant (it does not back-propagate a gradient).
- Returns:
- mygrad.Tensor
The soft sign function applied to x elementwise.
Examples
>>> import mygrad as mg >>> from mygrad.nnet.activations import soft_sign >>> x = mg.arange(-5, 6) >>> x Tensor([-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]) >>> y = soft_sign(x); y Tensor([-0.83333333, -0.8 , -0.75 , -0.66666667, -0.5 , 0. , 0.5 , 0.66666667, 0.75 , 0.8 , 0.83333333])
(Source code, png, hires.png, pdf)