mygrad.zeros_like#
- mygrad.zeros_like(other: ArrayLike, dtype: DTypeLikeReals | None = None, shape: int | Sequence[int] | None = None, *, constant: bool | None = None) Tensor [source]#
Return a Tensor of the same shape and type as the given, filled with zeros.
This docstring was adapted from
numpy.zeros_like
[1]- Parameters:
- otherArrayLike
The Tensor or array whose shape and datatype should be mirrored.
- dtypeOptional[DTypeLikeReals]
Override the data type of the returned Tensor with this value, or None to not override.
- shapeOptional[int, Sequence[int]]
If specified, overrides the shape of the result
- constantOptional[bool]
If
True
, this tensor is a constant, and thus does not facilitate back propagation. IfNone
then:Inferred from
other
, if other is a tensor Defaults toFalse
for float-type data. Defaults toTrue
for integer-type data.Integer-type tensors must be constant.
- Returns:
- Tensor
A Tensor of zeros whose shape and data type match other.
See also
empty_like
Return an empty tensor with shape and type of input.
ones_like
Return an tensor of ones with shape and type of input.
full_like
Return a new tensor with shape of input filled with value.
zeros
Return a new tensor setting values to zero.
References
[1]Retrieved from https://numpy.org/doc/stable/reference/generated/numpy.zeros_like.html
Examples
>>> import mygrad as mg >>> x = mg.arange(6).reshape((2, 3)) >>> x Tensor([[0, 1, 2], [3, 4, 5]])
>>> mg.zeros_like(x, constant=True) # tensor will not back-propagate a gradient Tensor([[0, 0, 0], [0, 0, 0]])
>>> y = mg.arange(3, dtype=float) >>> y Tensor([ 0., 1., 2.])
>>> mg.zeros_like(y) Tensor([ 0., 0., 0.])