mygrad.empty#
- mygrad.empty(shape: ~typing.Sequence[int] | int, dtype: ~mygrad.typing._dtype_like.DTypeLikeReals = <class 'numpy.float32'>, *, constant: bool | None = None) Tensor[source]#
Return a new Tensor of the given shape and type, without initializing entries.
This docstring was adapted from
numpy.empty[1]- Parameters:
- shapeUnion[int, Tuple[int]]
The shape of the empty array.
- dtypedata-type, optional (default=numpy.float32)
The data type of the output Tensor.
- constantOptional[bool]
If
True, this tensor is a constant, and thus does not facilitate back propagation.Defaults to
Falsefor float-type data. Defaults toTruefor integer-type data.Integer-type tensors must be constant.
- Returns:
- Tensor
A tensor of uninitialized data of the given shape and dtype.
See also
empty_likeReturn an empty tensor with shape and type of input.
onesReturn a new tensor setting values to one.
zerosReturn a new tensor setting values to zero.
fullReturn a new tensor of given shape filled with value.
Notes
empty, unlike zeros, does not set the array values to zero, and may therefore be marginally faster. On the other hand, it requires the user to manually set all the values in the array, and should be used with caution.
References
[1]Retrieved from https://numpy.org/doc/stable/reference/generated/numpy.empty.html
Examples
>>> import mygrad as mg >>> mg.empty([2, 2], constant=True) Tensor([[ -9.74499359e+001, 6.69583040e-309], [ 2.13182611e-314, 3.06959433e-309]]) #random
>>> mg.empty([2, 2], dtype=int) Tensor([[-1073741821, -1067949133], [ 496041986, 19249760]]) #random