mygrad.identity#
- mygrad.identity(n: int, dtype: ~mygrad.typing._dtype_like.DTypeLikeReals = <class 'float'>, *, constant: bool | None = None) Tensor [source]#
Return the identity Tensor; a square Tensor with 1s on the main diagonal and 0s elsewhere.
This docstring was adapted from
numpy.identity
[1]- Parameters:
- nint
The number of rows and columns in the output Tensor.
- dtypedata-type, optional (default=numpy.float32)
The data type of the output Tensor.
- constantOptional[bool]
If
True
, this tensor is a constant, and thus does not facilitate back propagation.Defaults to
False
for float-type data. Defaults toTrue
for integer-type data.Integer-type tensors must be constant.
- Returns:
- Tensor
A square Tensor whose main diagonal is 1 and all other elements are 0.
References
[1]Retrieved from https://numpy.org/doc/stable/reference/generated/numpy.identity.html
Examples
>>> import mygrad as mg >>> mg.identity(3) Tensor([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]])