mygrad.full#
- mygrad.full(shape: Sequence[int] | int, fill_value: ArrayLike, dtype: DTypeLikeReals | None = None, *, constant: bool | None = None) Tensor [source]#
Return a Tensor of the given shape and type, filled with fill_value.
This docstring was adapted from
numpy.full
[1]- Parameters:
- shapeUnion[int, Iterable[int]]
The shape of the output Tensor.
- fill_valueArrayLike
The value with which to fill the output Tensor. Note that this function is not differentiable – the resulting tensor will not backprop through fill_value.
The value with which to fill the output Tensor.
- dtypeOptional[DTypeLikeReals]
The data type of the output Tensor, or None to match fill_value..
- constantOptional[bool]
If
True
, this tensor is a constant, and thus does not facilitate back propagation.Defaults to
False
for float-type data. Defaults toTrue
for integer-type data.Integer-type tensors must be constant.
- Returns:
- Tensor
A Tensor of fill_value with the given shape and dtype.
References
[1]Retrieved from https://numpy.org/doc/stable/reference/generated/numpy.full.html
Examples
>>> import mygrad as mg >>> mg.full((2, 2), 33) Tensor([[ 33, 33], [ 33, 33]])
>>> mg.full((2, 2), 10) Tensor([[10, 10], [10, 10]])