mygrad.linspace#
- mygrad.linspace(start: ArrayLike, stop: ArrayLike, num: int = 50, endpoint: bool = True, dtype: DTypeLikeReals | None = None, axis: int = 0, *, constant: bool | None = None) Tensor [source]#
Return a Tensor with evenly-spaced numbers over a specified interval.
Values are generated within [start, stop], with the endpoint optionally excluded.
This docstring was adapted from
numpy.linspace
[1]- Parameters:
- startArrayLike
The starting value of the sequence, inclusive.
- stopArrayLike
The ending value of the sequence, inclusive unless include_endpoint is False.
- numint, optional (default=50)
The number of values to generate. Must be non-negative.
- endpointbool, optional (default=True)
Whether to include the endpoint in the Tensor. Note that if False, the step size changes to accommodate the sequence excluding the endpoint.
- dtypeOptional[DTypeLikeReals]
The data type of the output Tensor, or None to infer from the inputs.
- axisint, optional (default=0)
The axis in the result to store the samples - for array-like start/stop.
- constantOptional[bool]
If
True
, this tensor is a constant, and thus does not facilitate back propagation.Defaults to
False
for float-type data. Defaults toTrue
for integer-type data.Integer-type tensors must be constant.
- Returns:
- Tensor
See also
References
[1]Retrieved from https://numpy.org/doc/stable/reference/generated/numpy.linspace.html
Examples
>>> import mygrad as mg >>> mg.linspace(2.0, 3.0, num=5) Tensor([ 2. , 2.25, 2.5 , 2.75, 3. ]) >>> mg.linspace(2.0, 3.0, num=5, endpoint=False) Tensor([ 2. , 2.2, 2.4, 2.6, 2.8])