mygrad.full_like#
- mygrad.full_like(other: ArrayLike, fill_value: int | float, dtype: DTypeLikeReals | None = None, shape: int | Sequence[int] | None = None, constant: bool | None = None) Tensor [source]#
Return a Tensor of the same shape and type as the given, filled with fill_value.
This docstring was adapted from
numpy.full_like
[1]- Parameters:
- otherArrayLike
The tensor or array whose shape and datatype should be mirrored.
- fill_valueReal
The value with which to fill the output Tensor.
- dtypeOptional[DTypeLikeReals]
Override the data type of the returned Tensor with this value, or None to not override.
- shapeOptional[int, Sequence[int]]
If specified, overrides the shape of the result
- constantOptional[bool]
If
True
, this tensor is a constant, and thus does not facilitate back propagation. IfNone
then:Inferred from
other
, if other is a tensor Defaults toFalse
for float-type data. Defaults toTrue
for integer-type data.
- Returns:
- Tensor
A Tensor of fill_value whose shape and data type match other.
References
[1]Retrieved from https://numpy.org/doc/stable/reference/generated/numpy.full_like.html
Examples
>>> import mygrad as mg >>> x = mg.arange(6, dtype=int) >>> mg.full_like(x, 1) Tensor([1, 1, 1, 1, 1, 1]) >>> mg.full_like(x, 0.1) Tensor([0, 0, 0, 0, 0, 0]) >>> mg.full_like(x, 0.1, dtype=np.double) Tensor([ 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]) >>> mg.full_like(x, np.nan, dtype=np.double) Tensor([ nan, nan, nan, nan, nan, nan])
>>> y = mg.arange(6, dtype=np.double) >>> mg.full_like(y, 0.1) Tensor([ 0.1, 0.1, 0.1, 0.1, 0.1, 0.1])