mygrad.swapaxes#
- mygrad.swapaxes(a: ArrayLike, axis1: int, axis2: int, *, constant: bool | None = None) Tensor [source]#
Interchange two axes of a tensor.
- Parameters:
- aArrayLike
Input array.
- axis1int
First axis.
- axis2int
Second axis.
- constantOptional[bool]
If
True
, this tensor is treated as a constant, and thus does not facilitate back propagation (i.e.constant.grad
will always returnNone
).Defaults to
False
for float-type data. Defaults toTrue
for integer-type data.Integer-type tensors must be constant.
- Returns:
- mygrad.Tensor
Examples
>>> from mygrad import Tensor, swapaxes >>> x = Tensor([[1, 2, 3]]) >>> swapaxes(x, 0, 1) Tensor([[1], [2], [3]]) >>> x = Tensor([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) >>> x Tensor([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) >>> swapaxes(x, 0, 2) Tensor([[[0, 4], [2, 6]], [[1, 5], [3, 7]]])