mygrad.atleast_1d#
- mygrad.atleast_1d(tensors: ArrayLike, *, constant: bool | None = None) Tensor [source]#
- mygrad.atleast_1d(*tensors: ArrayLike, constant: bool | None = None) List[Tensor]
Convert inputs to tensors with at least one dimension.
Scalar inputs are converted to 1-dimensional tensors, whilst higher-dimensional inputs are preserved.
This docstring was adapted from
numpy.atleast_1d
.- Parameters:
- tens1, tens2, …ArrayLike
One or more input tensors.
- Returns:
- retTensor | List[Tensor]
A tensor, or list of tensors, each with
a.ndim >= 1
. Copies are made only if necessary.
See also
Examples
>>> import mygrad as mg >>> mg.atleast_1d(1.0) array([1.])
>>> x = mg.arange(9.0).reshape(3,3) >>> np.atleast_1d(x) Tensor([[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]) >>> mg.atleast_1d(x) is x True
>>> mg.atleast_1d(1, [3, 4]) [Tensor([1]), Tensor([3, 4])]
numpy.atleast_1d
will dispatch appropriately on tensors.>>> x = mg.tensor(2.) >>> np.atleast_1d(x) Tensor([2.])
>>> np.atleast_1d(x).backward() >>> x.grad array(1.)
If any argument to
numpy.atleast_1d
is a Tensor,mygrad.atleast_1d
will be dispatched on all of the arguments.>>> np.atleast_1d(x, 1.) [Tensor([2.]), Tensor([1.])]