mygrad.cumsum#
- mygrad.cumsum(a: ArrayLike, axis: None | int | Tuple[int, ...] = None, *, constant: bool | None = None) Tensor [source]#
Return the cumulative sum of the elements along a given axis.
This docstring was adapted from the official numpy documentation
- Parameters:
- aArrayLike
Input array.
- axisint, optional
Axis along which the cumulative sum is computed. The default (None) is to compute the cumsum over the flattened array.
- constantOptional[bool]
If
True
, this tensor is treated as a constant, and thus does not facilitate back propagation (i.e.constant.grad
will always returnNone
).Defaults to
False
for float-type data. Defaults toTrue
for integer-type data.Integer-type tensors must be constant.
- Returns:
- mygrad.Tensor
Examples
>>> from mygrad import cumsum, Tensor >>> a = Tensor([[1, 2, 3], ... [4, 5, 6]]) >>> cumsum(a) Tensor([ 1, 3, 6, 10, 15, 21])
>>> cumsum(a, axis=0) # sum over rows for each of the 3 columns Tensor([[1, 2, 3], [5, 7, 9]]) >>> cumsum(a, axis=1) # sum over columns for each of the 2 rows Tensor([[ 1, 3, 6], [ 4, 9, 15]])