from numbers import Real
from typing import Optional, Sequence, Tuple, Union
import numpy as np
try: # pragma: no cover
from numpy._core.einsumfunc import _parse_einsum_input
except ImportError: # pragma: no cover
from numpy.core.einsumfunc import _parse_einsum_input
from mygrad.math.misc.funcs import absolute
from mygrad.math.sequential.funcs import max as mg_max
from mygrad.math.sequential.funcs import min as mg_min
from mygrad.tensor_base import Tensor, implements_numpy_override
from mygrad.typing import ArrayLike
from .ops import EinSum, Norm
__all__ = ["einsum", "norm"]
[docs]@implements_numpy_override(np.linalg.norm)
def norm(
x: ArrayLike,
ord: Optional[Union[int, float]] = None,
axis: Optional[Union[int, Tuple[int]]] = None,
keepdims: bool = False,
*,
nan_to_num: bool = True,
constant: Optional[bool] = None,
) -> Tensor:
r"""Vector norm.
This function is an infinite number of vector norms (described below), depending
on the value of the ``ord`` parameter.
In contrast to ``numpy.linalg.norm``, matrix norms are not supported.
This docstring was adapted from that of ``numpy.linalg.norm`` [1]_.
Parameters
----------
x : ArrayLike
Input tensor. If `axis` is None, then `x` must be 1-D unless `ord`
is None. If both `axis` and `ord` are None, the 2-norm of
``x.ravel`` will be returned.
ord : Optional[Union[int, float]]
Order of the norm (see table under ``Notes``). inf means numpy's
`inf` object. The default is None.
axis : Optional[Union[int, Tuple[int]]]
If `axis` is an integer, it specifies the axis of `x` along which to
compute the vector norms. The default is None.
keepdims : bool, optional (default=False)
If this is set to True, the axes which are normed over are left in the
result as dimensions with size one. With this option the result will
broadcast correctly against the original `x`.
nan_to_num : bool, optional (default=True)
If `True` then gradients that would store nans due to the presence of
zeros in `x` will instead store zeros in those places.
constant : Optional[bool]
If ``True``, this tensor is treated as a constant, and thus does not
facilitate back propagation (i.e. ``constant.grad`` will always return
``None``).
Defaults to ``False`` for float-type data.
Defaults to ``True`` for integer-type data.
Integer-type tensors must be constant.
Returns
-------
Tensor
Norm(s) of the vector(s).
Notes
-----
For values of ``ord < 1``, the result is, strictly speaking, not a
mathematical 'norm', but it may still be useful for various numerical
purposes.
The following norms can be calculated:
===== ==========================
ord norm for vectors
===== ==========================
inf max(abs(x))
-inf min(abs(x))
0 sum(x != 0)
1 as below
-1 as below
2 as below
-2 as below
other sum(abs(x)**ord)**(1./ord)
===== ==========================
The Frobenius norm is given by [1]_:
:math:`||A||_F = [\sum_{i,j} abs(a_{i,j})^2]^{1/2}`
The nuclear norm is the sum of the singular values.
Both the Frobenius and nuclear norm orders are only defined for
matrices and raise a ValueError when ``x.ndim != 2``.
References
----------
.. [1] Retrieved from: https://numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html
.. [2] G. H. Golub and C. F. Van Loan, *Matrix Computations*,
Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15
Examples
--------
>>> import mygrad as mg
>>> x = mg.tensor([[1.0, 2.0, 3.0],
... [1.0, 0.0, 0.0]])
>>> l2_norms = mg.linalg.norm(x, axis=1, ord=2)
>>> l2_norms
Tensor([3.74165739, 1. ])
The presence of the elementwise absolute values in the norm operation means that zero-valued entries in any of
input vectors have an undefined derivative. When `nan_to_num=False` is specified these derivatives will be reported
as `nan`, otherwise they will be made to be 0.0.
>>> l2_norms = mg.linalg.norm(x, axis=1, ord=2, nan_to_num=True)
>>> l2_norms.backward()
>>> x.grad
array([[0.26726124, 0.53452248, 0.80178373],
[1. , nan, nan]])
This is rigorously true, but is often not the desired behavior in autodiff applications.
Rather, it can be preferable to use `0.0` to fill these undefined derivatives.
This is the default behavior, when `nan_to_num` is not specified.
>>> l2_norms = mg.linalg.norm(x, axis=1, ord=2, nan_to_num=False) # default setting: `nan_to_num=False`
>>> l2_norms.backward()
>>> x.grad
array([[0.26726124, 0.53452248, 0.80178373],
[1. , 0., 0.]])
L1 norms along each of the three columns:
>>> mg.linalg.norm(x, axis=0, ord=1)
Tensor([2., 2., 3.])
"""
if isinstance(ord, Real) and np.isinf(ord):
op = mg_max if ord > 0 else mg_min
abs_ = absolute(x, constant=constant)
out = op(abs_, axis=axis, keepdims=keepdims)
in_ndim = abs_.creator.variables[0].ndim
if (axis is None and ord is not None and in_ndim == 2) or (
hasattr(axis, "__len__") and len(axis) > 1
):
raise NotImplementedError(
"mygrad.linalg.norm does not support matrix norms"
)
return out
return Tensor._op(
Norm,
x,
op_kwargs={
"axis": axis,
"keepdims": keepdims,
"ord": ord,
"nan_to_num": nan_to_num,
},
constant=constant,
)
[docs]@implements_numpy_override()
def einsum(
*operands: Union[ArrayLike, str, Sequence[int]],
optimize: bool = False,
out: Optional[Union[np.ndarray, Tensor]] = None,
constant: Optional[bool] = None,
) -> Tensor:
r"""
einsum(subscripts, *operands)
Evaluates the Einstein summation convention on the operands. This implementation
exactly mirrors that of ``numpy.einsum`` and supports back-propagation through
all variety of tensor-products, sums, traces, and views that it can perform.
The following docstring was adapted from the documentation for ``numpy.einsum``
Using the Einstein summation convention, many common multi-dimensional
array operations can be represented in a simple fashion. This function
provides a way to compute such summations. The best way to understand this
function is to try the examples below, which show how many common NumPy/MyGrad
functions can be implemented as calls to ``einsum``.
Back-propagation via ``einsum`` is optimized such that any tensor that occurs
redundantly within the summation will only have its gradient computed once.
This optimization accommodates all number and combination of redundancies that can
be encountered.
E.g. back-propping through ``einsum('...,...->', x, x)`` will only incur a single
computation/accumulation for ``x.grad`` rather than two. This permits users to
leverage the efficiency of sum-reduction, where ``(x ** 2).sum()`` is sub-optimal,
without being penalized during back-propagation.
Parameters
----------
subscripts : str
Specifies the subscripts for summation.
operands : array_like
The tensors used in the summation.
optimize : {False, True, 'greedy', 'optimal'}, optional (default=False)
Controls if intermediate optimization should occur; also enables
the use of BLAS where possible. This can produce significant speedups
for computations like matrix multiplication.
No optimization will occur if False and True will default to the 'greedy'
algorithm. Also accepts an explicit contraction list from the
``np.einsum_path`` function. See ``np.einsum_path`` for more details.
constant : Optional[bool]
If ``True``, this tensor is treated as a constant, and thus does not
facilitate back propagation (i.e. ``constant.grad`` will always return
``None``).
Defaults to ``False`` for float-type data.
Defaults to ``True`` for integer-type data.
Integer-type tensors must be constant.
Returns
-------
output : mygrad.Tensor
The calculation based on the Einstein summation convention.
Notes
-----
The subscripts string is a comma-separated list of subscript labels,
where each label refers to a dimension of the corresponding operand.
Repeated subscripts labels in one operand take the diagonal. For example,
``einsum('ii', a)`` is equivalent to ``np.trace(a)`` (however, the former
supports back-propagation).
Whenever a label is repeated, it is summed, so ``einsum('i, i', a, b)``
is equivalent to ``np.inner(a, b)``. If a label appears only once,
it is not summed, so ``einsum('i', a)`` produces a view of ``a``
with no changes.
The order of labels in the output is by default alphabetical. This
means that ``np.einsum('ij', a)`` doesn't affect a 2D tensor, while
``einsum('ji', a)`` takes its transpose.
The output can be controlled by specifying output subscript labels
as well. This specifies the label order, and allows summing to
be disallowed or forced when desired. The call ``einsum('i->', a)``
is like ``np.sum(a, axis=-1)``, and ``einsum('ii->i', a)``
is like ``np.diag(a)``. The difference is that `einsum` does not
allow broadcasting by default.
To enable and control broadcasting, use an ellipsis. Default
NumPy-style broadcasting is done by adding an ellipsis
to the left of each term, like ``einsum('...ii->...i', a)``.
To take the trace along the first and last axes,
you can do ``einsum('i...i', a)``, or to do a matrix-matrix
product with the left-most indices instead of rightmost, you can do
``einsum('ij...,jk...->ik...', a, b)``.
When there is only one operand, no axes are summed, and no output
parameter is provided, a view into the operand is returned instead
of a new tensor. Thus, taking the diagonal as ``einsum('ii->i', a)``
produces a view.
An alternative way to provide the subscripts and operands is as
``einsum(op0, sublist0, op1, sublist1, ..., [sublistout])``. The examples
below have corresponding `einsum` calls with the two parameter methods.
Examples
--------
>>> import mygrad as mg
>>> import numpy as np
>>> a = mg.arange(25).reshape(5,5)
>>> b = mg.arange(5)
>>> c = mg.arange(6).reshape(2,3)
Compute the trace of ``a``, :math:`\sum_{i}{A_{ii}} = f`:
>>> einsum('ii', a)
Tensor(60)
>>> einsum(a, [0, 0])
Tensor(60)
>>> np.trace(a.data)
array(60)
Return a view along the diagonal of ``a``, :math:`A_{ii} = F_{i}`:
>>> einsum('ii->i', a)
Tensor([ 0, 6, 12, 18, 24])
>>> einsum(a, [0,0], [0])
Tensor([ 0, 6, 12, 18, 24])
>>> np.diag(a.data)
array([ 0, 6, 12, 18, 24])
Compute the matrix-vector product of ``a`` with ``b``, :math:`\sum_{j}{A_{ij} B_{j}} = F_{i}`:
>>> einsum('ij,j', a, b)
Tensor([ 30, 80, 130, 180, 230])
>>> einsum(a, [0,1], b, [1])
Tensor([ 30, 80, 130, 180, 230])
>>> mg.matmul(a, b)
Tensor([ 30, 80, 130, 180, 230])
>>> einsum('...j,j', a, b)
Tensor([ 30, 80, 130, 180, 230])
Take the transpose of ``c``, :math:`C_{ji} = F_{ij}`:
>>> einsum('ji', c)
Tensor([[0, 3],
[1, 4],
[2, 5]])
>>> einsum(c, [1, 0])
Tensor([[0, 3],
[1, 4],
[2, 5]])
>>> c.T
Tensor([[0, 3],
[1, 4],
[2, 5]])
Compute ``3 * c``:
>>> einsum('..., ...', 3, c)
Tensor([[ 0, 3, 6],
[ 9, 12, 15]])
>>> einsum(',ij', 3, c)
Tensor([[ 0, 3, 6],
[ 9, 12, 15]])
>>> einsum(3, [Ellipsis], c, [Ellipsis])
Tensor([[ 0, 3, 6],
[ 9, 12, 15]])
>>> 3 * c
Tensor([[ 0, 3, 6],
[ 9, 12, 15]])
Compute the inner product of ``b`` with itself, :math:`\sum_{i}{B_{i} B_{i}} = f`:
>>> einsum('i,i', b, b)
Tensor(30)
>>> einsum(b, [0], b, [0])
Tensor(30)
>>> np.inner(b.data, b.data)
30
Compute the outer product of ``array([1, 2])`` with ``b``, :math:`A_{i}B_{j} = F_{ij}`:
>>> einsum('i,j', np.arange(2)+1, b)
Tensor([[0, 1, 2, 3, 4],
[0, 2, 4, 6, 8]])
>>> einsum(np.arange(2)+1, [0], b, [1])
Tensor([[0, 1, 2, 3, 4],
[0, 2, 4, 6, 8]])
>>> np.outer(np.arange(2)+1, b)
array([[0, 1, 2, 3, 4],
[0, 2, 4, 6, 8]])
>>> einsum('i...->...', a)
Tensor([50, 55, 60, 65, 70])
>>> einsum(a, [0,Ellipsis], [Ellipsis])
Tensor([50, 55, 60, 65, 70])
>>> np.sum(a, axis=0)
array([50, 55, 60, 65, 70])
Compute the tensor product :math:`\sum_{ij}{A_{ijk} B_{jil}} = F_{kl}`
>>> a = mg.arange(60.).reshape(3,4,5)
>>> b = mg.arange(24.).reshape(4,3,2)
>>> einsum('ijk,jil->kl', a, b)
Tensor([[ 4400., 4730.],
[ 4532., 4874.],
[ 4664., 5018.],
[ 4796., 5162.],
[ 4928., 5306.]])
>>> einsum(a, [0,1,2], b, [1,0,3], [2,3])
Tensor([[ 4400., 4730.],
[ 4532., 4874.],
[ 4664., 5018.],
[ 4796., 5162.],
[ 4928., 5306.]])
>>> np.tensordot(a,b, axes=([1,0],[0,1]))
array([[ 4400., 4730.],
[ 4532., 4874.],
[ 4664., 5018.],
[ 4796., 5162.],
[ 4928., 5306.]])
Matrix multiply ``a.T`` with ``b.T``, :math:`\sum_{k}{A_{ki} B_{jk}} = F_{ij}`
>>> a = mg.arange(6).reshape((3,2))
>>> b = mg.arange(12).reshape((4,3))
>>> einsum('ki,jk->ij', a, b)
Tensor([[10, 28, 46, 64],
[13, 40, 67, 94]])
>>> einsum('ki,...k->i...', a, b)
Tensor([[10, 28, 46, 64],
[13, 40, 67, 94]])
>>> einsum('k...,jk', a, b)
Tensor([[10, 28, 46, 64],
[13, 40, 67, 94]])
Make an assignment to a view along the diagonal of ``a``:
>>> a = mg.zeros((3, 3))
>>> einsum('ii->i', a).data[:] = 1
>>> a
Tensor([[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.]])
"""
# TODO: normalize error handling for invalid inputs
operands = list(operands)
if isinstance(operands[0], str):
# operands form: "ijk, ijk", x, y
variables = operands[1:]
if any(isinstance(i, Tensor) for i in operands):
operands[1:] = (
var.data if isinstance(var, Tensor) else var for var in operands[1:]
)
else:
# operands form: op0, sublist0, op1, sublist1, ..., [sublistout]
end = -1 if len(operands) % 2 else None # -1 if sublistout is included
variables = operands[:end:2]
if any(isinstance(i, Tensor) for i in operands):
operands[:end:2] = (
var.data if isinstance(var, Tensor) else var for var in operands[:end:2]
)
in_lbls, out_lbls, _ = _parse_einsum_input(operands)
# einsum doesn't handle out=None properly in numpy 1.17
return Tensor._op(
EinSum,
*variables,
op_kwargs=dict(in_lbls=in_lbls, out_lbls=out_lbls, optimize=optimize),
constant=constant,
out=out,
)