mygrad.random.random_sample#
- mygrad.random.random_sample(shape: Shape | None = None, *, constant: bool | None = None) Tensor [source]#
Return random floats in the half-open interval [0.0, 1.0).
Results are from the “continuous uniform” distribution over the stated interval.
To create a random sample of a given shape on the interval [a, b), call (b-a) * random_sample(shape) + a
- Parameters:
- shape: int or tuple of ints, optional
Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. Default is None, in which case a single value is returned.
- constantOptional[bool]
If
True
, this tensor is treated as a constant, and thus does not facilitate back propagation (i.e.constant.grad
will always returnNone
).Defaults to
False
for float-type data. Defaults toTrue
for integer-type data.Integer-type tensors must be constant.
- Returns
- ——-
- int or mygrad.Tensor of ints
shape
-shaped array of random integers from the appropriate distribution, or a single such random int if size not provided.
Examples
>>> from mygrad.random import random_sample >>> random_sample((3, 2)) Tensor([[0.76490814, 0.69378441], [0.65228375, 0.68395309], [0.08228869, 0.03191064]])
>>> random_sample() Tensor(0.47644928)