mygrad.random.randn#
- mygrad.random.randn(*shape: int, constant: bool | None = None) Tensor [source]#
Return a sample (or samples) from the “standard normal” distribution.
- Parameters:
- shape: shape: d0, d1, … dnint, optional
The dimensions of the returned array, must be non-negative. If no argument is given a single Python float is returned.
- constantOptional[bool]
If
True
, this tensor is treated as a constant, and thus does not facilitate back propagation (i.e.constant.grad
will always returnNone
).Defaults to
False
for float-type data. Defaults toTrue
for integer-type data.Integer-type tensors must be constant.
- Returns:
- mygrad.Tensor
A
shape
-shaped Tensor of floating-point samples from the standard normal distribution, or a single such float if no parameters were supplied.
Examples
>>> from mygrad.random import randn >>> randn(3, 3, 2) Tensor([[[-0.45664135, 0.05060159], [ 1.36883177, -0.46084292], [-0.76647664, 0.81667174]],
- [[ 0.08336453, -1.35104408],
[ 0.73187355, 1.33405382], [ 0.28411209, -0.18047323]],
- [[-0.2239412 , -0.09170368],
[-0.39175898, 0.81260396], [-1.28788909, -1.52525778]]])