mygrad.random.rand#
- mygrad.random.rand(*shape: int, constant: bool | None = None) Tensor [source]#
Create a Tensor of the given shape and populate it with random samples from a uniform distribution over [0, 1).
- Parameters:
- shape: d0, d1, … dnint, optional
The dimensions of the returned array, must be non-negative. If no argument is given a single Python float is returned.
- constantOptional[bool]
If
True
, this tensor is treated as a constant, and thus does not facilitate back propagation (i.e.constant.grad
will always returnNone
).Defaults to
False
for float-type data. Defaults toTrue
for integer-type data.Integer-type tensors must be constant.
- Returns:
- mygrad.Tensor
A
shape
–shaped Tensor of floating-point samples from the uniform distribution over [0, 1), or a single such float if no parameters were supplied.
Examples
>>> from mygrad.random import rand >>> rand(3,4) Tensor([[0.9805903 , 0.82640985, 0.88230632, 0.73099815], [0.24845968, 0.12532893, 0.63171607, 0.32543228], [0.66029533, 0.79285341, 0.54967228, 0.25178508]])